Product fiche concerning the Commission Delegated Regulation (EU) No 65/2014 of 1 October 2013 and COMMISSION REGULATION (EU) No 66/2014 of 14 January 2014

Supplier name or brand	SMEG
Product code	TR62IP
Energy class first cavity (2002/40/CE)	A
No. of Cavities	2
Energy efficiency index	95.1
Energy efficiency class	A
Energy consumption per cycle in fan-forced mode	0.77 KWh
GAS - Energy consumption in forced air convection	2.77 MJ
Heat source first cavity	Electric
Volume	61 litres
Energy Efficiency Index, second cavity	105.7
Energy efficiency class, second cavity	A
Energy consumption per cycle in the forced convection of the second cavity	0.74 KWh
Gas - Energy consumption per cycle in natural convection in the second furnace	2.66 MJ
Heat source second cavity	Electric
Volume, second cavity	35 litres
Product mass	70.700 kg
Type of hob	Induction
No. of cooking zones/areas and/or gas burners	4
Position zone 1	Front left
Position zone 2	Rear left
Position zone 3	Rear right
Position zone 4	Front right
Heating technology zone 1	Induction - single
Heating technology zone 2	Induction - single
Heating technology zone 3	Induction - giant
Heating technology zone 4	Induction - single
Heating technology zone 9	
Diameter or length/width of zone 1	18.0 cm
Diameter or length/width of zone 2	18.0 cm
Diameter or length/width of zone 3	21.0 cm
Diameter or length/width of zone 4	14.5 cm

20 April 2024

Smeg S.p.A.

Via Leonardo da Vinci, 4
42016 Guastalla (RE), Italy
Tel. 003905228211
smeg@smeg.it

Energy consumption zone 1	$167.5 \mathrm{~Wh} / \mathrm{Kg}$
Energy consumption zone 2	$167.5 \mathrm{~Wh} / \mathrm{Kg}$
Energy consumption zone 3	$172.8 \mathrm{~Wh} / \mathrm{Kg}$
Energy consumption zone 4	$174.8 \mathrm{~Wh} / \mathrm{Kg}$
Energy consumption for the hob	$170.7 \mathrm{~Wh} / \mathrm{Kg}$

